连乘,1乘2乘3.....一直乘到 n等于 n!。
n!≈√(2πn) *(n/e)^n。这就是阶乘的定义。一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。
1808年,基斯顿·卡曼引进这个表示法。亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
1乘到n的通项公式:n=(n-1)×n。按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。